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Abstract

ML-enabled classifiers are regularly criticized for being ‘black boxes’: While
their predictive power is undisputed, it is difficult to understand why the model
arrived at a particular classification. The same can be said for humans classifying
photos according to their aesthetic appeal. They can quickly say whether they like
a photo or not – but giving justifications for such a choice is often challenging.
Also, human classifiers exhibit inconsistencies and biases, adding to the black box
nature of their classifications.

This paper first collects binary classifications of house pictures from a large
group of participants and then trains personalized ML classifiers for each partici-
pant. Predictions from these automated yet personal classification machines shed
light on biases and inconsistencies in the participants’ assessment of residential real
estate’s visual appeal.
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“It is harder to be unhappy when you are eating Craig’s ice cream.” Kurt Von-

negut (1973)

1 Introduction

In March 2021, Cambridge City Council’s planning committee rejected a project that

would have created modern living quarters for 113 students1. During the planning process,

307 objecting comments had been filed, many of which offered outspoken feedback on

the suggested design, including “quite possibly[...]the ugliest building in Cambridge”,

“another hideous[...]structure”, “eyesore”, or “looking like a prison” (Greater Cambridge

Shared Planning, 2021). The building’s design was not the only reason why so many

residents and planners objected, but aesthetic concerns offered one more opportunity to

block the project.

In situations like this, planning committees need to assess whether the design is indeed

as outrageous as suggested by the comments and whether the objectors’ statements are

truly reflecting the residents’ aesthetic preferences. The perspective of having 113 stu-

dents as neighbors could have darkened the view on the architectural merits. A “That’s

ugly!” might simply mean “Not in my backyard!”.

In this paper, we develop ML-enabled classifiers to predict personalized responses

to residential architecture. By engineering personalized prediction machines that can

tell whether somebody will find a house ugly or appealing, we can remove the design

evaluation from other considerations. We can prevent shifting standards or after-the-fact

justifications for a biased aesthetical judgment.

Also, this work offers new insights into the heterogeneity of personal tastes: The

diversity in aesthetic preferences when it comes to housing might be larger than developers

may believe – Using an array of personalized ML-enabled classifiers allows them to test

designs before making a well-informed decision. Potentially, this could lead to fewer home

1https://www.architectsjournal.co.uk/news/all-design-plans-for-cambridge-digs-on-st

ilts-rejected
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builders playing safe and opting for bland cookie-cutter homes.

Human aesthetic ratings are often inconsistent and are also evolving in time. From

an ML-modeling perspective, surveyed ratings of building designs, for instance, are not

hard ground truth data. At best, ratings are noisy proxies for a ground truth that eludes

direct observation. Contrasting an imperfect yet time-consistent ML classifier with a more

dynamic ‘human classifier’ provides insights into the black box of aesthetic judgments, or

rather the ensemble of black boxes that jointly form an opinion each time we are looking

at houses.

To emphasize the inconsistency of aesthetical evaluations, we collect ratings from a

large number of participants in a way that makes consistency difficult for most people.

We ask participants simply whether they like or dislike a sample of houses shown in

photos. The simple question is not that easy since most participants cannot break the

problem down into easy formulas. Many iterations make the task tedious and tiring

influencing the mood of the classifier. Also, people learn throughout the data collection

and constantly update their explicit and implicit criteria and benchmarks. Our findings

are relevant for a growing body of behavioral and experimental housing research that

uses images in combination with user-generated ratings on e.g. the perceived safeties of

streets Naik et al. (2016) or the attractivity of places. How big is the conceptual problem

of potentially biased training data really?

Finally, an automated classifier for ‘soft’ characteristics such as the exterior or interior

design of homes could automate parts of the search process and reduce costs for buyers.

Also, it improves the selection of comparables for appraisals, as shown in Lindenthal

(2020).
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2 Literature Review

2.1 Inconsistency in Housing Preference and Decision Making

Past literature has widely documented the heterogeneity in housing preferences, espe-

cially for the correlation between housing preference and socio-demographical factors.

Eichholtz and Lindenthal (2014) link the demographics at the household level with the

housing demand. Gebru et al. (2017) find that the external of residential buildings in

a neighborhood can predict the socio-demographic factors of residents, such as income,

race, education and voting patterns. Naik et al. (2016) also find that, in the 19 major

American cities, the perception of safety of streetscapes is positively correlated with the

household income in that street.

A large strand of literature has discussed the formation of and changes in heteroge-

neous housing preferences. Familiarity bias—the psychological phenomenon where people

opt for the more familiar options rather than the optimal ones—explains why home buyers

prefer properties that they feel more familiar with and tend to overestimate the values of

these properties (Agarwal, 2007; Gonzalez-Navarro and Quintana-Domeque, 2009; Seiler

et al., 2013). While some other papers discussed the potential changes in personal house

preferences due to big events in life like migration and social integration (Büchel et al.,

2020; Fan et al., 2020), most of these studies consider the formation and changes in

housing preference as a gradual and slow process.

Fewer real estate studies, however, have investigated the potential inconsistency in

housing preferences in an instant searching process, although such inconsistency in hu-

mans’ decision-making process over a relatively short period has been well documented

by the literature in many other fields like psychology and behavioral economics (Milk-

man et al., 2009; Sugden, 2021). An important strand of real estate literature discusses

the reference points in mental accounting of home values using the theoretical prospect

theory (Anenberg, 2011; Bokhari and Geltner, 2011; Genesove and Mayer, 2001), which

implies that the personal home valuations might change given the updates in market in-
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formation. Nevertheless, there still exists a knowledge gap in the short-term consistency

in the more latent perceptions of real estate, such as the preferences for home aesthetics

(Coburn et al., 2019).

2.2 ML in Real Estate and Urban Economics

There is a rapidly growing literature in real estate and urban economics using ML tech-

niques and novel unstructured data such as texts and images (Aubry et al., 2019; Shen

and Ross, 2020). One important application of ML and computer vision is to under-

stand human perceptions of housing quality and urban environment, which is costly and

challenging with traditional methods like surveys (Koch et al., 2019).

It has been documented in the literature that home aesthetics carry impacts on the

market housing price. Coulson and McMillen (2008) disentangle the vintage effects on

housing prices from other temporal variables like building age and time of sale. Francke

and van de Minne (2017) further separate the effects of vintage and external obsolescence

on housing price from the effects of physical deterioration and functional obsolescence.

Using over 60,000 transactions in the Netherlands, Buitelaar and Schilder (2017) find a

significant price premium of 15% for houses built in a neo-traditional architectural style.

Apart from the direct effect of building vintage on housing prices, the exteriors of the

building also introduce externalities that spill over to the market price of surrounding

buildings. Ahlfeldt and Mastro (2012) estimate that homeowners’ willingness to pay in-

creases by 5% to 8.5% for residential buildings adjacent to iconic architectural landmarks.

For the city of Rotterdam, homogeneous ensembles in neighborhoods are found to exert

a price premium of approximately 3.5% (Lindenthal, 2020).

The majority of these studies use traditional approaches, such as human assessments

by experts or surveys, to measure the building vintage (Freybote et al., 2016). However,

human assessment is normally costly and time-consuming, and it is also threatened by

limited sample sizes and large bias from unobserved factors. Other studies use indirect

measures for the building styles, such as the zoning of conserved buildings or the introduc-
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tion of redevelopment projects, to achieve cleaner institutional settings for the evaluation

(Ahlfeldt et al., 2017). Unfortunately, few of these approaches can scale up well.

Emerging literature aims to address these challenges by applying deep learning tech-

niques to classify human perceptions towards housing aesthetics. These studies affirm the

impact of building appearance on housing prices, although the magnitude of the effect

varies across market sectors and cycles (Glaeser et al., 2018; Lindenthal and Johnson,

2021; Johnson et al., 2020). The uniqueness of building vintages relative to the sur-

rounding homes also impacts the reference point of home sellers, which leads to a more

pronounced rounding of prices (Schmidt and Lindenthal, 2020).

3 Methodology

3.1 Image Classifier

We train personalized image classifiers for the aesthetics of residential real estate based

on deep convolutional neural networks (CNN) and transfer learning techniques (Glaeser

et al., 2018; Lindenthal and Johnson, 2021). Specifically, we first transform each image

into a 2,048-dimensional feature vector using the Inception computer vision model pre-

trained by Szegedy et al. (2016). Then, we include additional layers in the model to map

the feature vectors to each participant’s ratings, which gives us a personalized classifier

of housing aesthetics.

Unlike training image classifiers with large labeled databases, one main technical

challenge in our task is to deal with imbalanced and small samples in classes (Buda et al.,

2018). For example, people may dislike many images but like only a few ones or vice versa.

If we include imbalanced samples in our training procedure, the model may over-fit the

class (i.e., “liked” or “disliked”) with more training samples. Common methods to deal

with the imbalanced data include under-sampling (e.g., using fewer images from the larger

class), over-sampling (e.g., using data augmentation to increase the sample size of the

smaller class), and class-weight modification in models (Cui et al., 2019). In our models,
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we use the under-sampling method for two reasons. First, applying data augmentation,

such as rotation, distortion or flipping, to the smaller class could potentially impact the

aesthetics of houses and influence the accuracy of the ratings. Second, applying class-

weight adjustments may introduce biases when we manually tune the parameters of each

individual model.

More specifically, for each participant in the experiment, we train ML models to

predict whether they like an image using the following steps. We define the bottleneck-

class sample size of a participant i as the smaller one in the numbers of images they

like and dislike and denote it by bottlenecki. Firstly, we randomly select 100 images that

participant i likes and another 100 that the same participant i dislikes as the out-of-sample

testing data. Secondly, we use all remaining bottlenecki−100 images in the smaller class,

and another bottlenecki−100 images randomly selected in the larger class as the in-sample

training data. In other words, we sampled a balanced testing data with 200 images and

a balancing training data with 2 × (bottlenecki − 100) images. Thirdly, we train an ML

model (with the same model setting and parameters) and generate predictions on the

out-of-sample data with the model. We repeat this process 10 rounds. In the 11th round,

we use the images for which we have not obtained predictions in the previous 10 rounds

as the new out-of-sample testing data, and the same under-sampling method is applied

to draw training data from the remaining images. Lastly, we use the majority vote to

determine the classification of an image. If an image is both classified to be “liked” and

“disliked”, we select the class with the higher average classification score.

3.2 Object Detection

To analyze the consistency in participants’ rankings, we also apply ML techniques to

construct two variables that describe the features of the houses and their surrounding

environments. The first variable, Trees, is defined as the fraction of the image size

taken up by trees. The second variable, Density, represents the housing density and

is approximated with the log number of houses in an image. These two variables are
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selected because trees and housing density are well-documented to impact home prefer-

ences (Dehring and Dunse, 2006; Wachter and Wong, 2008). Following the methodology

in Wan and Lindenthal (2021), we automatically detect trees and houses in an image

using the Inception object detection model. We also obtain a rectangular mask that is

drawn tightly around each identified object, with which we can calculate the area of the

identified object.

4 Data

We select the first 3,000 images of homes from Flickr after searching for the keyword

“house”.2 Then, we manually remove images of derelict houses, toy houses, artwork,

etc. Nevertheless, we do not remove homes atypical in style (e.g., English Mansions).

The geographic coverage is global, but North America and Europe are over-represented.

There are 2,139 images left after the sample screening.

The advantage of using images from a photography platform is that the images are

of better quality than those retrieved from e.g. Google Street View. Also, the buildings

are more interesting since photographers do not take pictures of a representative stock.

For our task, this is desirable, as we hope for a diverse and divisive sample of photos that

will lead to strong variation in ratings.

We designed an app that lets participants like or dislike images on their mobile phones3

and Appendix Table B1 shows the user interface of the app. Participants log into the

app anonymously and are first asked to fill in a short survey about their background

(e.g., gender, age, ethnicity, education, etc.) After that, the images are shown to each

participant in the same order sequentially.4 The participants can swipe an image to the

right if they like it, or to the left if they dislike it. They may also choose to terminate

the experiment early if they do not want to rate the entire sample.

2These images are offered by the authors under a creative commons license.
3https://4walls.cremll.com
4We randomized the images to ensure that the key image features we study, including tree and density,

are not correlated with the order of appearance in the app (Appendix Table A2).
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We collected responses from 133 participants in total. To permit training a reliable

ML model of each participant based on our methodology, we include only samples by

participants who have liked or disliked at least 200 images each. This yields a sample of

36 participants and 43,150 ratings for our main regression analysis.

Table 1 reports the summary statistics of our main sample. The definition of variables

is reported in Appendix Table A1. Panel A of Table 1 presents the summary of ratings.

On average, 36.7% of the images are liked by the participants. Participants spend around

2.5 seconds rating an image on average. Panel B reports the summary at the participant

level. Each person likes 39.1% of the images. All participants have at least rated the

first 488 images. Our sample has relatively even distributions in terms of gender and age

group, but white people with higher education levels are over-sampled.

— Insert Table 1 about here —

5 Results

5.1 Baseline Results

The first set of descriptive results from the experiment reveal a wide distribution of tastes

across the participants. If all had similar aesthetic preferences, the distribution of the

share of likes per image should be bimodal: Either the majority likes an image or not.

This is clearly not the case, as Figure 1 plots the share of participants that liked an

image. (a) is based on the subset of images that were ranked at least by 70 participants

while (b) is derived from a larger sample of images that have been ranked by at least 10

participants. The black lines represent estimated densities. Both distributions suggest

substantial differences in tastes; participants that rank more images like fewer of them

(Figure 1b). In Appendix B, we also show examples of houses that most participants

liked (Figure B2), disliked (Figure B3), or have mixed opinions on (Figure B4).

— Insert Figure 1 and Figure 2 about here —
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Figure 2 adds a time dimension to the picture. The horizontal axis represents the

order in which the images appeared in the app. The vertical axis denotes the share of

participants that liked an image. For the first half of the images presented in the app,

the rankings were on average higher and more varied than for the second half. Possibly,

participants refine their criteria, learn about other images in the sample, and become

more critical. In addition, the monotonous nature of the task might lead to tiredness or

inattention.

How consistent are the participants’ rankings? A few randomly selected images were

presented to participants twice. Figure 3 plots the share of consistent rankings of the

repeated images conditional on the number of other images shown before the image re-

emerges (horizontal axis). The vertical axis denotes the share of consistent rankings of

the repeat images. Overall, participants rank images consistently, with almost perfect

consistency for quick repetitions. However, stated preferences are more likely to change

when many other images are shown before an image is presented for ranking again.

Figure 4 pictures the relationship between the prediction accuracy of the personalized

ML models and the training data sample size. Training data are balanced and feature the

same number of likes and dislikes, which implies that the maximum training data depends

not only on the overall number of images ranked by users but also on their respective share

of likes.5 The vertical axis is the F1-score, the harmonic mean of Precision and Recall,

of the ML model. Overall, all models arrive at an out-of-sample predictive performance

above the value of 0.5 which a random predictor (e.g. tossing a coin) would achieve. The

variation in the predictive power of the personalized ML classifiers varies strongly across

respondents, as visualized by the vertical dispersion in Figure 4. Not surprisingly, larger

training data samples lead to higher F1-scores. The distributions of Precision, Recall, and

F1-scores summarized in Table 2 highlight the heterogeneity of the fit between human

and machine classifications once more.

— Insert Figure 3, Figure 4, and Table 2 about here —

5See Table 1B for a distribution of % Likes per user.
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5.2 Preference (Dis-)Similarities and Rating Persistence

Next, we investigate how different tastes between pairs of participants are and, more

importantly, whether these differences are preserved in the predictions from the person-

alized ML classifiers. If all ML classifiers, for instance, responded to some image details

that are not meaningful for human classifiers, then the ML classifications should be more

correlated between participants than the training data. Figure 5 plots estimated density

functions for the distribution of ranking similarities across participants. For any two

users, a similarity score is calculated as the number of image rankings they agreed on

(either liked or disliked) divided by the number of images they have both rated. The red

line shows the distribution of similarity scores in ratings by participants while the blue

line represents the distribution of similarity scores in predicted ratings (ML).

Again, strong differences in tastes are evident as the average similarity score is esti-

mated to be 0.598. Interestingly, the distribution of the similarity scores based on ML

predictions does not differ much, notwithstanding a fatter tail to the right.

— Insert Figure 5 and Figure 6 about here —

Moving on from pairwise similarities to clustering analysis of aesthetic tastes we test

whether predicted tastes can be captured by fewer clusters than the participants’ direct

responses.

The horizontal axis in Figure 6 denotes the number of clusters (K) and the vertical

axis is the total sum of squared errors within clusters. The red line represents the ratings

and the blue line represents the ML-predicted ratings. With the blue line below the red

line, we conclude that groups of predicted aesthetic preferences have more in common

than groups of directly revealed preferences.

The ML-enabled classifiers will arrive at persistent predictions by construction. The

training of models is separated from the prediction. Human minds will constantly update

the internal model when making new predictions and therefore might rate images differ-

ently over time. Mood, boredom, blood sugar levels, or other factors might influence a
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participant’s classification. In the next section, we will use the consistent ML ratings to

better understand the dynamics in the participants’ ratings.

Table 3 presents estimated marginal effects at means from a logit regression in which

participants’ ratings (Liked by Participant) are partially explained by the ML rating

(Liked by ML) and additional covariates.

The coefficients on the ML classifications are positive and statistically significant in

all 5 model specifications. The magnitudes of the marginal effects are also sizeable, given

the mean of 0.37 (Table 1). User fixed effects account for differences in the propensity

to like an image within participants.6 Overall, the machines can capture the aesthetic

preferences of ‘their’ users well.

The coefficients on the share of the image area taken up by trees in Model (2) offer a

first glimpse of the time-varying nature of participants’ classifications. If all information

from the images is reflected in the ML classifications then adding the Trees variable will

not change the coefficients on Liked by ML. We find a positive and significant relationship

between trees and users liking an image. In a sense, greenery can improve the perception

of buildings that are, subjectively, not architectural masterpieces.

In addition, the negative coefficient on the interaction term Liked by ML × Trees

indicates that the ML classifications are less helpful when trees are present. This could

be explained either by the ML classifiers not picking up the presence of trees or by

participants changing their minds about trees or focusing more on the actual home,

consciously or unconsciously, while rating images. The latter is more likely, as Table 4

will show. At the beginning of the experiment, users respond more positively to trees but

start to ignore them once they have rated more pictures. The ML classifier tries to learn

from these contradictory inputs – and offers an imperfect compromise as a prediction.

As a result, the predictive power of the ML classifier will decrease for images containing

trees.

In contrast, the coefficient on our measure of development density (the number of

6We do not further analyze the coefficients on the demographic control variables and leave that for a
future version of this paper when we have a larger and more representative sample of participants.
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buildings detected in an image), is significant and negative (Model 3) while the interac-

tion term with Liked by ML is statistically insignificant. This means that the ML classifier

might not be able to fully incorporate the density information (or the surrounding build-

ings make the house itself look less attractive). However, the main insight is, that the

participants do not update their (negative!) attitudes towards density while rating and

thus do not present a moving target for the ML classifier while training.

Not all images are equally easy to rate. We capture the Rate Time between the

timestamps when an image is sent to a participant and when the response is received by

the app. We assume that the time needed to rate an image is not randomly distributed

but partially depends on the house shown in the images. For some images, participants

might need more time to make up their minds, or they might enjoy looking at the scenery.

We do not know which one it is – but we observe that the predictions by the ML classifiers

are less meaningful for images with longer rating times (negative coefficient for interaction

term), which suggests that some images are simply more difficult to rate, for both the

machines and humans.

Reassuringly, combining the previously independently discussed variables into the

more comprehensive Model (5) does not change the coefficient estimates qualitatively.

— Insert Table 3 about here —

Table 4 offers more insights into the dynamic black box between our ears. When

comparing the responses to images appearing early in the app to images that are presented

later we find that people tend to like later images less. Apparently, people are careful to

reject in the beginning, as they need time to find their bearings and to learn. Later the

ratings become more critical.

Model (2) confirms the changes in attitudes towards trees: Initially, more trees lead

to more likes and the effect is twice as strong for images from the first half than for

images appearing later. Potentially, respondents learn to abstract from surroundings and

focus on the building more? Model (3), however, shows that density, indeed, is disliked

13



throughout. This preference appears to be robust in time with no updating in the second

half of the sample.

Again, we find that images that participants inspect for longer are liked more often

(Model 4). This complexity effect is stronger for images appearing later. The coefficient

on log(rate time) is not statistically significant for early images but becomes significant

later on.

— Insert Table 4 about here —

6 Conclusion

ML-enabled classifiers are regularly criticized for being ‘black boxes’: While their pre-

dictive power is undisputed, it is difficult to understand why the model arrived at a

particular classification. The same can be said for humans classifying photos according

to their aesthetic appeal. They can quickly say whether they like a photo or not – but

giving justifications for such a choice is often challenging. Also, human classifiers exhibit

inconsistencies and biases, adding to the black-box nature of their classifications.

This paper first collects binary classifications of house pictures from a large group of

participants and then trains personalized ML classifiers for each participant. The hetero-

geneity of personal tastes is preserved in the ML predictions: The automatic classifiers

are useful ‘digital twins’ that could be used to evaluate designs, assess building applica-

tions, search for suitable homes, or to find comparables. The predictive power is far from

perfect but already useful with F1-scores ranging between 0.6 and 0.7.

Predictions from these automated yet personal classification machines shed light on

biases and inconsistencies in the participants’ assessment of residential real estate’s vi-

sual appeal. In the coming months, we will increase the number of participants, train

additional personal classifiers, and research whether preferences and biases can be linked

to demographic characteristics – the current sample is still too small and unbalanced in

that respect.
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In addition, we intend to generate two sets of new images of houses based on generative

adversarial networks (GAN). The first set will be trained on images the human classifiers

‘liked’ whereas the second will be based on images the personalized ML classifier predicted

as ‘liked’ by the participant. Finally, participants will rate the generated images from

both sets. We can test whether imperfect but consistent classifications might represent

the unobservable aesthetical ‘ground truth’ better than ratings from a better but time-

varying classifier.
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K. Büchel, M. V. Ehrlich, D. Puga, and E. Viladecans-Marsal. Calling from the outside:
The role of networks in residential mobility. Journal of Urban Economics, 119:103277,
2020.

M. Buda, A. Maki, and M. A. Mazurowski. A systematic study of the class imbalance
problem in convolutional neural networks. Neural Networks, 106:249–259, 2018.

E. Buitelaar and F. Schilder. The economics of style: Measuring the price effect of
neo-traditional architecture in housing. Real Estate Economics, 45(1):7–27, 2017.

A. Coburn, O. Kardan, H. Kotabe, J. Steinberg, M. C. Hout, A. Robbins, J. MacDonald,
G. Hayn-Leichsenring, and M. G. Berman. Psychological responses to natural patterns
in architecture. Journal of Environmental Psychology, 62:133–145, 2019.

N. E. Coulson and D. P. McMillen. Estimating time, age and vintage effects in housing
prices. Journal of Housing Economics, 17(2):138–151, 2008.

Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. Class-balanced loss based on effective
number of samples. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 9268–9277, 2019.

C. Dehring and N. Dunse. Housing density and the effect of proximity to public open
space in aberdeen, scotland. Real Estate Economics, 34(4):553–566, 2006.

P. Eichholtz and T. Lindenthal. Demographics, human capital, and the demand for
housing. Journal of Housing Economics, 26:19–32, 2014.

Y. Fan, H. P. Teo, Y. Tu, and W. X. Wan. The road to integration: Post-migration
experience and migrant housing behavior in singapore. Available at SSRN, 2020.

16



M. K. Francke and A. M. van de Minne. Land, structure and depreciation. Real Estate
Economics, 45(2):415–451, 2017.

J. Freybote, L. Simon, and L. Beitelspacher. Understanding the contribution of curb
appeal to retail real estate values. Journal of Property Research, 33(2):147–161, 2016.

T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, E. L. Aiden, and L. Fei-Fei. Using deep
learning and google street view to estimate the demographic makeup of neighborhoods
across the united states. Proceedings of the National Academy of Sciences, 114(50):
13108–13113, 2017.

D. Genesove and C. Mayer. Loss aversion and seller behavior: Evidence from the housing
market. The Quarterly Journal of Economics, 116(4):1233–1260, 2001.

E. L. Glaeser, M. S. Kincaid, and N. Naik. Computer vision and real estate: Do looks
matter and do incentives determine looks. Working paper, 2018.

M. Gonzalez-Navarro and C. Quintana-Domeque. The reliability of self-reported home
values in a developing country context. Journal of Housing Economics, 18(4):311–324,
2009.

Greater Cambridge Shared Planning, 2021. URL https://applications.greatercamb

ridgeplanning.org/online-applications/applicationDetails.do?activeTab=n

eighbourComments.

E. B. Johnson, A. Tidwell, S. V. Villupuram, et al. Valuing curb appeal. Journal of Real
Estate Finance and Economics, 60(1):111–133, 2020.

D. Koch, M. Despotovic, S. Leiber, M. Sakeena, M. Döller, and M. Zeppelzauer. Real
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Figure 1: Share of “Likes” per Image

(a) Images ranked by at least 70 participants

(b) Images ranked by at least 10 participants

Notes: This figure plots the share of participants that liked an image. (a) is based on the subset of
images that were ranked at least by 70 participants while (b) is derived from a larger sample of images
that have been ranked by at least 10 participants. The black lines represent estimated densities. Both
distributions suggest substantial differences in tastes: If all participants had identical tastes, a bimodal
distribution would emerge. This is clearly not the case. Participants that rank more images like fewer
of them (b).
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Figure 2: Share of “Likes” per Image, in Order of Image Appearance

Notes: The horizontal axis represents the order in which the images appeared in the app. The vertical
axis denotes the share of participants that liked an image. For the first half of the images presented
in the app, the rankings were on average higher and more varied than for the second half. Possibly,
participants refine their criteria, learn about other images in the sample, and become more critical. The
red line depicts a fitted linear trend.
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Figure 3: Consistency of Rating for Repeated Images

Notes: A few randomly selected images were presented to participants twice. This figure plots the share
of consistent rankings of the repeated images conditional on the number of other images shown before
the image re-emerges (horizontal axis). The vertical axis denotes the share of consistent rankings of
the repeat images. Overall, participants rank images consistently. However, stated preferences are more
likely to change when many other images are shown before the repeated ranking.
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Figure 4: ML Model Accuracy and Training Sample Size

Notes: This figure shows the relationship between the prediction accuracy of the ML model and the
training data sample size. Training data are balanced and feature the same number of likes and dislikes,
which implies that the maximum training data depends not only on the overall number of images ranked
by users but also on their respective share of likes (see Table 1B for a distribution of % Likes per user).
The vertical axis is the F1-score of the ML model. Overall, all models arrive at an out-of-sample predictive
performance above 0.5 (also see Table 2). The predictive power of the personalized ML classifiers varies
strongly across respondents, as visualized by the vertical dispersion in the figure. Not surprisingly, larger
training data samples lead to higher F1-scores. Fitted line in red.
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Figure 5: Density Distributions of Human and ML Classifications

Notes: This figure plots estimated density functions for the distribution of ranking similarities across
participants. For any two users, a similarity score is calculated as the number of image rankings they
agreed on (either liked or disliked) divided by the number of images they have both rated. The red line
shows the distribution of similarity scores in ratings by participants while the blue line represents the
distribution of similarity scores in predicted ratings (ML).

24



Figure 6: Cluster Analysis of Aesthetic Tastes: Participants’ Ratings vs. ML Predictions

Notes: This figure presents the clustering analysis results of aesthetic tastes in ratings and ML-predicted
ratings, using the K-means method. The horizontal axis denotes the number of clusters (K) and the
vertical axis is the total sum of squared errors within clusters. The red line represents the ratings and
the blue line represents the ML-predicted ratings. Predicted user preferences apparently are easier to
capture in fewer clusters than the participants’ direct rankings (blue line below red line).
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Table 1: Summary Statistics

A. Summary by Image

(1) (2) (3) (4) (5) (6) (7) (8)
N mean sd min p25 p50 p75 max

Liked by Participant 43,150 0.367 0.482 0 0 0 1 1
Liked by ML 43,150 0.450 0.498 0 0 0 1 1
Trees 43,150 0.276 0.235 0.000 0.074 0.226 0.428 0.977
Density 43,150 1.113 0.406 0.000 0.693 1.099 1.386 2.890
Rate Time 43,150 0.938 0.368 0.000 0.693 0.693 1.099 2.398

B. Summary by Participant

(1) (2) (3) (4) (5) (6) (7) (8)
N mean sd min p25 p50 p75 max

Share of Liked by Par-
ticipant

36 0.394 0.169 0.132 0.259 0.383 0.510 0.736

Share of Liked by ML 36 0.460 0.079 0.273 0.391 0.469 0.519 0.581
Number of Images
Rated

36 1,199 521 488 754 1,088 1,485 2,139

Gender 36 0.472 0.506 0 0 0 1 1
Ethnicity 36 2.278 0.741 1 2 2 2 4
Age Group 36 4.583 2.247 1 3 4 6 9
Education Level 36 3.222 0.959 1 3 3 4 4

Notes: The table presents the summary statistics of the key variables in our analysis. Panel A reports the
summary by images and Panel B reports the summary by participants. The definition of the variables
is presented in Appendix Table A1.

Table 2: Prediction Accuracy of Personalized ML Classifiers

(1) (2) (3) (4) (5) (6) (7) (8)
N mean sd min p25 p50 p75 max

Precision 36 0.6821 0.0560 0.6014 0.6524 0.6740 0.7112 0.8590
Recall 36 0.6677 0.0664 0.4520 0.6500 0.6675 0.7015 0.7790
F1-score 36 0.6735 0.0548 0.5316 0.6489 0.6690 0.6936 0.8093

Notes: This table summarises the prediction accuracy of 36 ML classifiers trained on
each participant’s image ratings. Recall is the share of ratings predicted correctly while
Precision is the share of images correctly predicted to be liked by a participant. F1-scores
are the harmonic means of Precision and Recall : F1-score = 2×Recall×Precision

Recall+Precision
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Table 3: Explanatory Power of the Personalized ML Classifiers

(1) (2) (3) (4) (5)
Logit Model

Y: Liked by Participant

Liked by ML 0.2832*** 0.3128*** 0.2749*** 0.3989*** 0.4286***
(0.0107) (0.0111) (0.0179) (0.0256) (0.0299)

Trees 0.1181*** 0.1069***
(0.0185) (0.0180)

Liked by ML × Trees -0.1087*** -0.1050***
(0.0197) (0.0197)

Density -0.0322*** -0.0217***
(0.0087) (0.0083)

Liked by ML × Density 0.0074 -0.0024
(0.0096) (0.0099)

Rate Time 0.1201*** 0.1190***
(0.0217) (0.0217)

Liked by ML × Rate Time -0.1200*** -0.1184***
(0.0204) (0.0207)

Demographic Controls Y Y Y Y Y
User Fixed Effects Y Y Y Y Y
Observations 43,150 43,150 43,150 43,150 43,150
Pseudo-R2 0.188 0.190 0.189 0.193 0.195

Notes: The table presents estimated marginal effects at means from a logit regression in which partic-
ipants’ ratings (Liked by Participant) are partially explained by the predicted rating Liked by ML and
additional covariates. Trees is the share of the image area taken up by trees. Density equals the natural
logarithm of the number of different buildings in the image. Rate Time is the natural logarithm of the
time between the timestamps when an image is sent to a participant and when the response is submitted
(in seconds). Demographic control variables (not shown) include gender, ethnicity, age, and education
of participants. Robust standard errors are clustered by user and are reported in parentheses. ∗p < 0.1;
∗∗p < 0.05; ∗∗∗p < 0.01.
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Table 4: Consistency of Classification by Participants

(1) (2) (3) (4) (5)
Logit Model

Y: Liked by Participant

Later Appearance -0.0642*** -0.0442*** -0.0820*** -0.1084*** -0.0990***
(0.0170) (0.0159) (0.0166) (0.0239) (0.0255)

Liked by ML 0.2715*** 0.2713*** 0.2721*** 0.2700*** 0.2703***
(0.0123) (0.0124) (0.0123) (0.0124) (0.0126)

Liked by ML × Later Appearance 0.0231*** 0.0225** 0.0220** 0.0225*** 0.0212**
(0.0088) (0.0088) (0.0089) (0.0086) (0.0086)

Tree 0.0931*** 0.0831***
(0.0181) (0.0185)

Tree × Later Appearance -0.0707*** -0.0693***
(0.0187) (0.0204)

Density -0.0364*** -0.0290***
(0.0081) (0.0078)

Density × Later Appearance 0.0163 0.0096
(0.0114) (0.0123)

Rate Time 0.0376 0.0377
(0.0295) (0.0298)

Rate Time × Later Appearance 0.0520*** 0.0519***
(0.0179) (0.0180)

Demographic Controls Y Y Y Y Y
User Fixed Effects Y Y Y Y Y
Observations 43,150 43,150 43,150 43,150 43,150
Pseudo-R2 0.191 0.192 0.192 0.193 0.195

Notes: The table presents estimated marginal effects at means from a logit regression in which partic-
ipants’ ratings (Liked by Participant) are partially explained by the predicted rating Liked by ML and
additional covariates. Later Appearance is a dummy variable denoting the second half of images rated by
each user. Trees is the share of the image area taken up by trees. Density equals the natural logarithm of
the number of different buildings in the image. Rate Time is the natural logarithm of the time between
the timestamps when an image is sent to a participant and when the response is submitted (in seconds).
Demographic control variables (not shown) include gender, ethnicity, age, and education of participants.
Robust standard errors are clustered by user and are reported in parentheses. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p
< 0.01
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Appendix A: Supplementary Tables

Table A1: Definition of Variables

Variable Name Definition

Liked by Participant A dummy variable equal to 1 if the image is ranked as “liked” by a
participant; otherwise, it equals 0.

Liked by ML A dummy variable equal to 1 if the ML model predicts that a par-
ticipant will like the image; otherwise, it equals 0.

Trees The share of the image area taken up by trees.

Density The number of houses detected in an image, in logarithmic form.

Rate Time The log of 1 + the time between the timestamps when an image is
sent to a participant and when the response is submitted (in sec-
onds). Rating times over 10 seconds are winsorized at 10 seconds.

Share of Liked by Participant The share of images rated as “liked” by a participant among all
images rated by them.

Share of Liked by ML The share of images predicted as “liked” by a participant’s ML model
among all images rated by them.

Number of Images Rated The total number of images rated by a participant in the app.

Gendera The gender of the participant, encoded as:
1 = Female; 2 = Male

Ethnicity The ethnicity of the participant, encoded as:
1 = Others; 2 = Other white background (except British); 3 =
Asian; 4 = White British

Age Group The age group of the participant, encoded as:
1 = 20–24; 2 = 25–29; 3 = 30–34; 4 = 35–39; 5 = 40–44; 6 = 45–49;
7 = 50–54; 8 = 55–60; 9 = over 60

Education Level The highest education level that the participant has obtained, en-
coded as:
1 = High school or lower; 2 = Bachelor; 3 = Master; 4 = PhD

Notes: This table presents the definitions of key variables in this study.

aWhile having more options in the initial survey, all participants identified unambiguously as female
or male.
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Table A2: Image Features and the Order of Appearance

(1)
Order of Appearance

Trees 0.4587
(0.5803)

[1.05]
Density -0.5280

(0.3397)
[1.05]

Observations 2,139
R-squared 0.002

Notes: This table presents the regression results of image features (Trees and Density) on the order that
an image appears in the app. Robust standard errors are reported in parentheses and variance inflation
factors (VIF) in brackets. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Appendix B: Supplementary Figures

Figure B1: User Interface of the App

(a) The page of instructions (b) The page to rate images

Notes: This figure shows the user interfaces of the app that we used in the experiment.
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Figure B2: Examples of Images that Most Participants Liked

Notes: This figure shows some examples of images that most (over 80%) of the participants liked.
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Figure B3: Examples of Images that Most Participants Disliked

Notes: This figure shows some examples of images that none of the participants liked.
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Figure B4: Examples of Images that Have Most Mixed Opinions

Notes: This figure shows some examples of images that have the most mixed opinions (the share of
“liked” is around 50%).
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